## Music Moves 1

Prepared by davidavery
Generated on 2016-03-31 using datasets downloaded on 2016-03-31

## Contents

1 Enrolment ..... 1
1.1 Enrolment cumulative growth ..... 1
2 Activity ..... 2
2.1 Activity by step ..... 2
2.2 Active learners by week ..... 6
2.3 Learner survival ..... 7
2.4 Activity heatmaps ..... 10
2.4.1 Step completions ..... 10
2.4.2 Comments ..... 12
3 Comments ..... 13
3.1 Comments overview ..... 13
3.2 Comments by step ..... 13
3.3 Comments by date ..... 13
3.4 Likes by step ..... 14
3.5 Comment sentiment ..... 15
3.6 Word count ..... 16
3.7 Top comments by Likes ..... 17
4 Quizzes and Tests ..... 20
4.1 Overview ..... 20
4.2 Rasch analysis ..... 21
4.3 Person-Item Map ..... 21
4.4 ICC Curves ..... 22
4.5 Quartile Analysis ..... 24
4.6 Attempts to correct ..... 25
5 Peer Review ..... 28
5.14 .14 ..... 28

## 1 Enrolment

1.1 Enrolment cumulative growth


## 2 Activity

2.1 Activity by step


| Step | Completions | Visits | Comments | Likes | Mean Completion (mins) |
| :--- | ---: | ---: | ---: | ---: | :--- |
| 1.1 | 1384 | 1658 | 120 | 156 | $8.08 \mathrm{~s} . \mathrm{d}=17.66$ |
| 1.2 | 1321 | 1554 | 749 | 593 | $8.58 \mathrm{~s} . \mathrm{d}=18.34$ |
| 1.3 | 1338 | 1576 | 55 | 120 | $7.57 \mathrm{~s} . \mathrm{d}=18.28$ |
| 1.4 | 1334 | 1517 | 130 | 223 | $6.06 \mathrm{~s} . \mathrm{d}=16.36$ |
| 1.5 | 1245 | 1486 | 203 | 430 | $12.39 \mathrm{~s} . \mathrm{d}=19.63$ |
| 1.6 | 1134 | 1332 | 159 | 357 | $14.34 \mathrm{~s} . \mathrm{d}=24.40$ |
| 1.7 | 1084 | 1233 | 191 | 342 | $12.11 \mathrm{~s} . \mathrm{d}=20.44$ |
| 1.8 | 1026 | 1165 | 124 | 200 | $13.35 \mathrm{~s} . \mathrm{d}=22.50$ |
| 1.9 | 934 | 1105 | 357 | 189 | $14.71 \mathrm{~s} . \mathrm{d}=24.66$ |
| 1.10 | 817 | 1032 |  |  | $11.57 \mathrm{~s} . \mathrm{d}=17.34$ |
| 1.11 | 905 | 996 | 38 | 31 | $4.11 \mathrm{~s} . \mathrm{d}=13.85$ |
| 1.12 | 870 | 985 | 187 | 182 | $9.90 \mathrm{~s} . \mathrm{d}=18.79$ |
| 1.13 | 815 | 907 |  |  | $2.47 \mathrm{~s} . \mathrm{d}=9.59$ |
| 1.14 | 845 | 898 | 24 | 49 | $3.50 \mathrm{~s} . \mathrm{d}=14.18$ |
| 1.15 | 810 | 898 | 42 | 74 | $11.35 \mathrm{~s} . \mathrm{d}=19.53$ |
| 1.16 | 739 | 869 |  |  | $5.80 \mathrm{~s} . \mathrm{d}=11.51$ |
| 1.17 | 771 | 820 | 250 | 198 | $4.84 \mathrm{~s} . \mathrm{d}=16.63$ |
| 1.18 | 735 | 806 | 158 | 262 | $5.55 \mathrm{~s} . \mathrm{d}=13.83$ |
| 2.1 | 721 | 772 | 218 | 194 | $6.44 \mathrm{~s} . \mathrm{d}=17.04$ |
| 2.2 | 704 | 785 | 108 | 191 | $13.53 \mathrm{~s} . \mathrm{d}=25.72$ |
| 2.3 | 684 | 761 | 91 | 194 | $13.54 \mathrm{~s} . \mathrm{d}=20.02$ |
| 2.4 | 643 | 711 | 204 | 244 | $10.31 \mathrm{~s} . \mathrm{d}=21.85$ |
| 2.5 | 652 | 694 | 16 | 35 | $3.09 \mathrm{~s} . \mathrm{d}=10.59$ |
| 2.6 | 636 | 695 | 67 | 114 | $10.65 \mathrm{~s} . \mathrm{d}=17.20$ |
| 2.7 | 611 | 674 | 211 | 66 | $6.72 \mathrm{~s} . \mathrm{d}=13.50$ |
| 2.8 | 596 | 648 | 51 | 89 | $11.57 \mathrm{~s} . \mathrm{d}=18.97$ |
| 2.9 | 568 | 624 |  |  | $2.76 \mathrm{~s} . \mathrm{d}=6.74$ |
| 2.10 | 588 | 622 | 19 | 26 | $4.40 \mathrm{~s} . \mathrm{d}=17.03$ |
| 2.11 | 568 | 622 | 76 | 138 | $11.95 \mathrm{~s} . \mathrm{d}=18.34$ |
| 2.12 | 546 | 604 | 56 | 73 | $13.01 \mathrm{~s} . \mathrm{d}=20.02$ |
| 2.13 | 534 | 570 | 44 | 66 | $10.23 \mathrm{~s} . \mathrm{d}=23.35$ |
| 2.14 | 502 | 567 |  |  | $5.47 \mathrm{~s} . \mathrm{d}=12.51$ |
| 2.15 | 519 | 550 | 175 | 148 | $4.04 \mathrm{~s} . d=14.19$ |
| 2.16 | 499 | 549 | 50 | 61 | $4.92 \mathrm{~s} . \mathrm{d}=11.42$ |
| 3.1 | 488 | 525 | 15 | 13 | $2.70 \mathrm{~s} . \mathrm{d}=13.71$ |
| 3.2 | 501 | 525 | 165 | 79 | $3.81 \mathrm{~s} . \mathrm{d}=11.16$ |
| 3.3 | 500 | 534 | 23 | 56 | $4.85 \mathrm{~s} . \mathrm{d}=15.50$ |
| 3.4 | 489 | 534 | 61 | 76 | $8.39 \mathrm{~s} . \mathrm{d}=14.79$ |
| 3.5 | 466 | 517 | 202 | 92 | $18.13 \mathrm{~s} . \mathrm{d}=26.97$ |
| 3.6 | 473 | 507 | 36 | 45 | $8.70 \mathrm{~s} . \mathrm{d}=21.00$ |
| 3.7 | 466 | 504 | 103 | 165 | $10.97 \mathrm{~s} . \mathrm{d}=22.58$ |
| 3.8 | 506 | 156 | 98 | $12.26 \mathrm{~s} . \mathrm{d}=24.97$ |  |
| 3.10 | 478 | 130 | 34 | $7.40 \mathrm{~s} . \mathrm{d}=17.80$ |  |
|  | 481 | 10 | 20 | $3.32 \mathrm{~s} . \mathrm{d}=13.61$ |  |
|  |  |  |  |  |  |


| 3.11 | 448 | 482 | 49 | 37 | $9.43 \mathrm{~s} . \mathrm{d}=14.65$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3.12 | 422 | 469 |  |  | $1.97 \mathrm{~s} . \mathrm{d}=2.34$ |
| 3.13 | 441 | 468 | 16 | 6 | 2.54 s.d=11.43 |
| 3.14 | 430 | 468 | 9 | 16 | $9.79 \mathrm{s.d}=20.23$ |
| 3.15 | 424 | 456 | 13 | 13 | $8.05 \mathrm{~s} . \mathrm{d}=16.94$ |
| 3.16 | 420 | 453 | 55 | 78 | 10.14 s.d=18.35 |
| 3.17 | 388 | 448 |  |  | $9.70 \mathrm{s.d}=15.99$ |
| 3.18 | 404 | 435 | 105 | 98 | 2.49 s.d= 6.26 |
| 3.19 | 393 | 433 | 52 | 93 | 4.59 s.d=11.03 |
| 4.1 | 403 | 432 | 10 | 14 | 1.47 s.d= 5.12 |
| 4.2 | 393 | 443 | 117 | 160 | 13.64 s.d=22.74 |
| 4.3 | 388 | 427 | 70 | 82 | 11.67 s.d=20.05 |
| 4.4 | 383 | 415 | 54 | 46 | 11.14 s.d=23.74 |
| 4.5 | 372 | 405 | 115 | 34 | 8.70 s.d=17.02 |
| 4.6 | 371 | 397 | 116 | 70 | 6.26 s.d=14.12 |
| 4.7 | 344 | 392 |  |  | 8.84 s.d=17.15 |
| 4.8 | 360 | 386 | 20 | 23 | $7.45 \mathrm{~s} . \mathrm{d}=23.93$ |
| 4.9 | 360 | 382 | 38 | 63 | 7.06 s.d=14.09 |
| 4.10 | 351 | 379 | 141 | 128 | $7.03 \mathrm{s.d}=15.75$ |
| 4.11 | 355 | 376 | 42 | 38 | $6.54 \mathrm{~s} . \mathrm{d}=13.45$ |
| 4.12 | 356 | 377 | 28 | 29 | 6.83 s.d=11.75 |
| 4.13 | 331 | 371 |  |  | 2.64 s.d= 7.37 |
| 4.14 | 117 | 376 |  |  | 71.56 s.d=47.54 |
| 4.15 | 112 | 337 |  |  | 29.14 s.d=32.06 |
| 4.16 | 224 | 325 |  |  | 4.27 s.d=16.16 |
| 4.17 | 296 | 333 | 118 | 111 | 4.09 s.d=14.88 |
| 4.18 | 293 | 335 | 42 | 52 | 4.65 s.d=13.95 |
| 5.1 | 318 | 340 | 6 | 4 | 2.47 s.d=12.87 |
| 5.2 | 319 | 354 | 39 | 58 | $8.45 \mathrm{~s} . \mathrm{d}=16.95$ |
| 5.3 | 311 | 340 | 110 | 63 | 4.40 s.d= 7.88 |
| 5.4 | 301 | 338 | 54 | 70 | 11.45 s.d=18.75 |
| 5.5 | 300 | 334 | 85 | 99 | 10.06 s.d=18.73 |
| 5.6 | 292 | 319 | 68 | 63 | $9.07 \mathrm{~s} . \mathrm{d}=20.48$ |
| 5.7 | 289 | 319 | 79 | 38 | $10.62 \mathrm{~s} . \mathrm{d}=20.34$ |
| 5.8 | 265 | 311 |  |  | 3.97 s.d= 7.48 |
| 5.9 | 290 | 316 | 24 | 21 | $6.76 \mathrm{s.d}=14.51$ |
| 5.10 | 283 | 313 | 31 | 38 | $14.76 \mathrm{~s} . \mathrm{d}=28.44$ |
| 5.11 | 280 | 304 | 34 | 26 | 7.63 s.d=16.50 |
| 5.12 | 257 | 299 |  |  | 3.09 s.d= 9.28 |
| 5.13 | 282 | 298 | 4 | 0 | $2.18 \mathrm{s.d}=12.62$ |
| 5.14 | 271 | 304 | 33 | 40 | 10.41 s.d=14.88 |
| 5.15 | 269 | 291 | 24 | 21 | 9.98 s.d=22.83 |
| 5.16 | 242 | 288 |  |  | 4.39 s.d=15.50 |
| 5.17 | 265 | 288 | 99 | 70 | $4.01 \mathrm{s.d}=12.46$ |
| 5.18 | 258 | 287 | 32 | 30 | 3.81 s.d= 8.78 |
| 6.1 | 281 | 317 | 13 | 9 | 1.86 s.d= 9.47 |


| 6.2 | 287 | 335 | 51 | 63 | $12.05 \mathrm{~s} . \mathrm{d}=20.00$ |
| :--- | :--- | :--- | :--- | ---: | :--- |
| 6.3 | 275 | 317 | 35 | 37 | $16.91 \mathrm{~s} . \mathrm{d}=32.78$ |
| 6.4 | 275 | 309 | 62 | 122 | $11.70 \mathrm{~s} . \mathrm{d}=16.97$ |
| 6.5 | 271 | 298 | 85 | 102 | $8.63 \mathrm{~s} . \mathrm{d}=21.28$ |
| 6.6 | 265 | 296 | 76 | 47 | $14.37 \mathrm{~s} . \mathrm{d}=25.91$ |
| 6.7 | 234 | 287 |  |  | $5.27 \mathrm{~s} . \mathrm{d}=8.57$ |
| 6.8 | 260 | 292 | 25 | 44 | $7.69 \mathrm{~s} . \mathrm{d}=20.90$ |
| 6.9 | 257 | 282 | 17 | 24 | $4.42 \mathrm{~s} . \mathrm{d}=6.89$ |
| 6.10 | 258 | 284 | 54 | 46 | $7.88 \mathrm{~s} . \mathrm{d}=14.66$ |
| 6.11 | 259 | 280 | 46 | 43 | $6.05 \mathrm{~s} . d=9.73$ |
| 6.12 | 258 | 279 | 17 | 19 | $4.50 \mathrm{~s} . \mathrm{d}=14.92$ |
| 6.13 | 255 | 275 | 99 | 85 | $4.72 \mathrm{~s} . \mathrm{d}=13.39$ |
| 6.14 | 228 | 280 |  |  | $7.33 \mathrm{~s} . \mathrm{d}=12.58$ |
| 6.15 | 250 | 273 | 86 | 105 | $4.14 \mathrm{~s} . d=11.79$ |
| 6.16 | 221 | 286 | 83 | 173 | $4.47 \mathrm{~s} . d=16.15$ |

Table 1: Activity overview by step (completion time calculated from first visit to last completion)

### 2.2 Active learners by week



Table 2: Active Learners by Week

### 2.3 Learner survival

By examining when each learner visits or completes a step, we can ascertain when they stopped engaging with the course. This can be seen either by date or by step.


Figure 1: Last step progresses by date (course duration highlighted)


Figure 2: Last step progresses by step


Figure 3: Hours spend by week


Figure 4: Hours spend by week


Figure 5: Hours spend by week

### 2.4 Activity heatmaps

2.4.1 Step completions


Figure 6: Step completions by step and date (course weeks denoted by dashed lines)

### 2.4.2 Comments



Figure 7: Comments by step and date (course weeks denoted by dashed lines)

## 3 Comments

### 3.1 Comments overview

| Overview |  |
| :--- | :--- |
| Total comments | 7755 |
| Unique authors | 814 |
| Mean word count | 61.26 (s.d. $=49.54)$ |
| Total Likes | 8474 |

### 3.2 Comments by step



Figure 8: Comment count for each course step

### 3.3 Comments by date



Figure 9: Comments by date (lines indicate course weeks)

### 3.4 Likes by step



Figure 10: Like count for each course step

### 3.5 Comment sentiment

Using word lists and Bayesian processes we can calculate 'sentiment' for comments. While inherently problematic, this may reveal areas of learner discontent-for instance in a post-test discussion step.


Figure 11: Step comment sentiment score. Positive numbers indicate occurance of positive words.

### 3.6 Word count



Figure 12: Histogram of word count in comments across the course

### 3.7 Top comments by Likes

| Step | Comment | Likes |
| :--- | :--- | :--- |
| 2.3 | This brought to mind a study about how reading affects the brain. Vol- <br> unteers were asked to switch between 'casual' reading of a text i.e. as <br> in reading for pleasure, and 'focused' reading, as in conducting a literary <br> analysis. Researchers expected small changes in the part of the brain <br> that regulates attention. But it appeared that 'focused' reading engaged <br> parts of the brain associated with movement and touch - as if readers <br> were physically placing themselves within the story as they analyzed <br> it. http://www.openculture.com/2015/O7/this-is-your-brain-on-jane- <br> austen-the-neuroscience-of-reading-great-literature.html Other studies <br> in this field are looking at poetry and rhythm in the brain, and how <br> metaphors excite sensory regions of the brain. So potentially a close <br> correlation with these studies concerning music. <br> To Hans, Alexander, Kristian (and Kristian's baby and other guests!), I am <br> still amazed that all this is here for us on line for free, you have put in <br> a huge amount of effort to prepare this and made studying enormously <br> entertaining with your sense of humour! I am in awe at the fact that you <br> must trawl through all our comments and our faltering efforts at under- <br> standing: we know you do because of the sheer number of "likes" you <br> leave and comments you post (along with Diana and Hallygerd). I also <br> really value the many, many contributions by other coursers, their vari- <br> ous backgrounds of expertise, culture, musical tastes, bodily responses <br> etc and I have learnt so much through the many threads I have got in- <br> volved in when folk have replied to my muddled thoughts. Thank you <br> all. <br> Ihink the same amazing 'experiment' done with 'bah' and 'fah' is <br> even more impressive. Look at this 3 minute video; the moment | 15 |
| 6.16 |  |  |

As a first thing, I have to say that in my mother tongue (Spanish) we don't have this ambiguity with different terms, we just say "movimiento" and that's it. But since I grew up with English by my side, I do have an unprecise feeling that there might be a slight difference between both words. "Motion" does actually sound more technical, reminds me more of Physics at school or something similar. And maybe the existence or non-existence of a corresponding verb does make a difference: "I move my arm" shows that I change my arm's position on space, whereas "I set my arm in motion" refers more to the physical implication of the aforementioned movement. So, "motion" only comes into being if something is being "moved". Seen this way, I would say that motion could be understood as the consequence of movement. But, please, all you English native speakers, do feel free to correct me if you think I'm wrong!
The affordance of an instrument would be the type of sound-producing actions (and corresponding sounds) you can produce on it. So a piano affords piano-like sounds. You will never get the sound of a violin when you play (an acoustic) piano. This is why it is sometimes confusing to hear sounds produced on electronic instruments, because we feel that there is a lack of connection between the actions being produced and the sound we hear.
Fifteen or twenty years ago, while driving I spotted an acoustic guitar along the curb in someones trash. The top or head was broken in two pieces between the lower tuning pegs. I snatched it up. Since then it has been stored gathering dust in the rafters of the basement ceiling. Every now and then I would gaze at it thinking it crazy to attempt a repair. I could not bring myself to part with it.
Call me crazy, but last week I cleaned it up, applied some glue, a couple screws, and bought some strings. Yes! it worked!
Since I don't know how to play, I messed around some with a guitar when I was maybe 13 yrs old, this return has been full of wonder. A reawakening to life for this wooden box and possibly me as well.
Most of the last two days have been spent with my new friend. Just to pluck one string, feel my finger touch-release upon the string, hear and feel the string as it travels along on a journey of the vibration. To know the song of the guitar body against my own body.
Not quite music. Sounds like love.
Some dances are recorded in Laban notation, however it is hard to continually note whether your limbs are turned in or out so ballet has come up with its own version called Benesh notation. Most famous ballet dances are now recorded using Benesh notation and stored in libraries. The Royal Academy of Dance also notates all of its dance syllabus as it is a much more accurate way to describe dance rather then in words. The syllabus books have the written descriptions on one side and the Benesh notation on the other. (Benesh notation is written on a musical score so that it can lay direction in line with the musicians)

| 2.11 | Perhaps it will happen later in the course, but I would really have valued <br> at least one example of the theory in practice to help me fix it in my mind <br> and make more sense of it. There is a lot of quite complex information <br> being presented this week and I'm not sure it is all going to sink in! | 12 |
| :--- | :--- | :--- |
| 3.7 | Here's an example of people around the world dancing to the same piece <br> of music https://www.youtube.com/watch?v=Zz-54AB9hyk Which one <br> would be you?! | 12 |

## 4 Quizzes and Tests

### 4.1 Overview



### 4.2 Rasch analysis

Rasch modelling can be used to produce a logistical representation of both learner ability and question difficulty. This data is based upon quiz/test performance for all students, taking only their first attempt at each question.

|  | Difficulty |
| ---: | ---: |
| Min. | -2.51 |
| 1st Qu. | -1.78 |
| Median | -0.30 |
| Mean | 0.03 |
| 3rd Qu. | 1.34 |
| Max. | 5.62 |

Table 4: Question difficulty summary

### 4.3 Person-Item Map

A 'Person-Item Map' shows how these two parameters relate. We would generally expect learner ability to fall within a normal distribution. Questions (shown on a scale of difficulty at the bottom) which discriminate across the full spectrum of ability would therefore overlap visually with the histogram at the top.


### 4.4 ICC Curves

The Item Characteristic Curve (ICC) shows the probability of a correct response as a function of the ability of persons. We might expect an 'average student'-with an ability of 0 -to have a $0.5(50 \%)$ chance of solving a given question. The more pronounced an S-curve that is visible, the better the question discriminates between different abilities. This curve may sit at different positions on the $x$-axis, showing questions of different difficulties.


### 4.5 Quartile Analysis

A simplier to interpret approach that doesn't involve modeling is to partition the cohort by their overall percentage score across all questions and consider the probability of a correct result at each attempt (shown only up to the third) for each of these quantiles.


### 4.6 Attempts to correct





## 5 Peer Review

### 5.14 .14

| Overview |  |
| :--- | :--- |
| Total assignments | 117 |
| Total reviews | 221 |
| Mean assignment word count | 388.54 (s.d. $=213.84)$ |
| Mean review word count | 67.31 (s.d. $=48.92$ ) |
| Mean reviews per assignment | 1.89 (s.d. $=0.45)$ |
| Mean minutes to first review | 468.96 (s.d. $=917.64)$ |
| Median minutes to first review | 135.65 |
| Minimum minutes to first review | 1.55 |



Figure 13: Assignment submission word count

Taking the time difference between first viewing the step and submitting/completing it we can estimate the the length of time learners are spending on task. This may however be influenced by people who first view the steps, then returning at a later time to submit.

It should be considered that learners may paste in assignments previously authored in an external application (e.g. Microsoft Word) resulting in length assignments which appear to be completed in an extremely short length of time. Simiarly, points clustered around origin may be 'junk' submissions entered to skip the submission step.


Figure 14: Minutes between viewing assignment step and submitting (capped to 3 hours)


Figure 15: Time spend (as above) against words submitted


Figure 16: Reviews per assignment


Figure 17: Reviews completed per user

